Por favor, use este identificador para citar o enlazar este ítem:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/863828
Título: | Revisiting "privacy preserving clustering by data transformation". |
Autor: | OLIVEIRA, S. R. de M.![]() ![]() ZAÏANE, O. ![]() ![]() |
Afiliación: | STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; OSMAR R. ZAÏANE, University of Alberta. |
Año: | 2010 |
Referencia: | Journal of Information and Data Management, Belo Horizonte, v. 1, n. 1, p. 53-56, Feb. 2010. |
Descripción: | Preserving the privacy of individuals when data are shared for clustering is a complex problem. The challenge is how to protect the underlying data values subjected to clustering without jeopardizing the similarity between objects under analysis. In this short paper, we revisit a family of geometric data transformation methods (GDTMs) that distort numerical attributes by translations, scalings, rotations, or even by the combination of these geometric transformations. Such a method was designed to address privacy-preserving clustering, in scenarios where data owners must not only meet privacy requirements but also guarantee valid clustering results. We offer a detailed, comprehensive and up-to-date picture of methods for privacy-preserving clustering by data transformation. |
NAL Thesaurus: | Information retrieval |
Palabras clave: | Clusterização Privacidade em mineração de dados Recuperação da informação Clustering |
Tipo de Material: | Artigo de periódico |
Acceso: | openAccess |
Aparece en las colecciones: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
33812PB.pdf | 92.72 kB | Adobe PDF | ![]() Visualizar/Abrir |