Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/9310
Title: Predicting enzyme class from protein structural parameters and bagging predictors.
Authors: YAMAGISHI, M. E. B.
OLIVEIRA, S. R. M.
BORRO, L. C.
SANTOS, E. H.
JARDINE, J. G.
VIEIRA, F. D.
MAZONI, I.
NARCISO, M. G.
KUSER-FALCÃO, P. R.
NESHICH, G.
Affiliation: MICHEL EDUARDO BELEZA YAMAGISHI, CNPTIA; STANLEY ROBSON DE MEDEIROS OLIVEIRA, CNPTIA; LUIZ C. BORRO; EDGARD HENRIQUE DOS SANTOS, CNPTIA; JOSÉ GILBERTO JARDINE, CNPTIA; FÁBIO DANILO VIEIRA, CNPTIA; IVAN MAZONI, CNPTIA; MARCELO GONCALVES NARCISO, CNPTIA; PAULA REGINA KUSER FALCÃO, CNPTIA; GORAN NESHICH, CNPTIA.
Date Issued: 2006
Citation: In: ANNUAL INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY, 14.; ANNUAL AB3C CONFERENCE, 2., 2006, Fortaleza. Conference Program... Fortaleza: ISCB, 2006.
Pages: Não paginado.
Description: Short Abstract: In this work we present a new method to classify enzymes that uses the STING_DB physical-chemical parameters and Bagging predictors. By building models based on "decision tree" and "neural network", we obtained an accuracy of 74% on average. These results outperform the similar models proposed in literature.
Thesagro: Proteina
Enzima
NAL Thesaurus: Proteins
Enzymes
Bioinformatics
Keywords: Parâmetros estruturais da proteína
Parâmetros de Sting_DB
Bioinformática
Notes: ISMB, X-MEETING 2006. Poster I-13.
Type of Material: Resumo em anais e proceedings
Access: openAccess
Appears in Collections:Resumo em anais de congresso (CNPTIA)

Files in This Item:
File Description SizeFormat 
I-13-ISMB-2006.pdf132.18 kBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace