Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1142040
Title: Data fusion in agriculture: resolving ambiguities and closing data gaps.
Authors: BARBEDO, J. G. A.
Affiliation: JAYME GARCIA ARNAL BARBEDO, CNPTIA.
Date Issued: 2022
Citation: Sensors, v. 22, n. 6, p. 1-20, 2022.
Description: Abstract. Acquiring useful data from agricultural areas has always been somewhat of a challenge, as these are often expansive, remote, and vulnerable to weather events. Despite these challenges, as technologies evolve and prices drop, a surge of new data are being collected. Although a wealth of data are being collected at different scales (i.e., proximal, aerial, satellite, ancillary data), this has been geographically unequal, causing certain areas to be virtually devoid of useful data to help face their specific challenges. However, even in areas with available resources and good infrastructure, data and knowledge gaps are still prevalent, because agricultural environments are mostly uncontrolled and there are vast numbers of factors that need to be taken into account and properly measured for a full characterization of a given area. As a result, data from a single sensor type are frequently unable to provide unambiguous answers, even with very effective algorithms, and even if the problem at hand is well defined and limited in scope. Fusing the information contained in different sensors and in data from different types is one possible solution that has been explored for some decades. The idea behind data fusion involves exploring complementarities and synergies of different kinds of data in order to extract more reliable and useful information about the areas being analyzed. While some success has been achieved, there are still many challenges that prevent a more widespread adoption of this type of approach. This is particularly true for the highly complex environments found in agricultural areas. In this article, we provide a comprehensive overview on the data fusion applied to agricultural problems; we present the main successes, highlight the main challenges that remain, and suggest possible directions for future research.
Thesagro: Agricultura de Precisão
NAL Thesaurus: Variability
Precision agriculture
Artificial intelligence
Keywords: Sensores
Variabilidade
Inteligência artificial
Fusão de dados
Data fusion
Sensors
DOI: https://doi.org/10.3390/s22062285
Notes: Article number: 2285.
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Artigo em periódico indexado (CNPTIA)

Files in This Item:
File Description SizeFormat 
AP-Data-Fusion-in-Agriculture-2022.pdf1,15 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace