Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1145714
Título: Evaluation of early season mapping of integrated crop livestock systems using Sentinel-2 data.
Autor: TORO, A. P. S. G. D.
WERNER, J. P. S.
REIS, A. A. dos
ESQUERDO, J. C. D. M.
ANTUNES, J. F. G.
COUTINHO, A. C.
LAMPARELLI, R. A. C.
MAGALHÃES, P. S. G.
FIGUEIREDO, G. K. D. A.
Afiliación: FEAGRI/UNICAMP; FEAGRI/UNICAMP; UNICAMP; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA, FEAGRI/UNICAMP; JOAO FRANCISCO GONCALVES ANTUNES, CNPTIA; ALEXANDRE CAMARGO COUTINHO, CNPTIA; UNICAMP; UNICAMP; FEAGRI/UNICAMP.
Año: 2022
Referencia: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 43, B3, p. 1335-1340, 2022.
Descripción: ABSTRACT. Various approaches were developed considering the need to increase agricultural productivity in cultivated areas without more deforestation, such as the Integrated Crop livestock systems (ICLS). The ICLS could be composed of annual crops followed by pastureland with the presence of cattle. Due to the high temporal dynamic of rotation between crops over the season, monitoring these areas is a big challenge. Also, agricultural organizations worldwide highlight the need for early-season maps for this kind of work. In this context, this study evaluated the potential of open data (Sentinel-2) data to map ICLS areas. The performance of two classifiers was evaluated: one of Machine Learning (random forest) and the other of Deep Learning (LSTM). Three different time windows of data were tested (Entire season, 180 days, and 120 days). Using the RF classifier, it was possible to achieve satisfactory results (Overall accuracy higher than 80%) for the early season (180 days). However, further studies are needed to explain better the lower(when compared to Random Forest) accuracy achieved by LSTM net (0.79 % for 180 days) and compare the results achieved here with results for a study area with different rates of cloud cover.
Thesagro: Sensoriamento Remoto
NAL Thesaurus: Remote sensing
Palabras clave: Agricultura regenerativa
Identificação de culturas
Floresta aleatória
Aprendizado profundo
LSTM
Regenerative agriculture
Crop identification
Random forest
DOI: https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1335-2022
Notas: Edition of proceedings of the 2022 edition of the XXIVth ISPRS Congress, Nice, France.
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em anais de congresso (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AP-Evalution-early-season-2022.pdf11.74 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace