Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1157822
Título: Genome-wide association study for morphological, physiological, and productive traits in Coffea arabica using structural equation models.
Autor: SUELA, M. M.
AZEVEDO, C. F.
NASCIMENTO, A. C. C.
MOMEN, M.
OLIVEIRA, A. C. B. de
CAIXETA, E. T.
MOROTA, G.
NASCIMENTO, M.
Afiliación: MATHEUS MASSARIOL SUELA, UNIVERSIDADE FEDERAL DE VIÇOSA; CAMILA FERREIRA AZEVEDO, UNIVERSIDADE FEDERAL DE VIÇOSA; ANA CAROLINA CAMPANA NASCIMENTO, UNIVERSIDADE FEDERAL DE VIÇOSA; MEHDI MOMEN, UNIVERSITY OF WISCONSIN-MADISON; ANTONIO CARLOS BAIAO DE OLIVEIRA, CNPCa; EVELINE TEIXEIRA CAIXETA MOURA, CNPCa; GOTA MOROTA, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY; MOYSÉS NASCIMENTO, UNIVERSIDADE FEDERAL DE VIÇOSA.
Año: 2023
Referencia: Tree Genetics & Genomes, v. 19, n. 3, 2023.
Páginas: 17 p.
Descripción: Yield is one of the most important traits of arabica coffee. Plant breeders seek to maximize yield directly or indirectly, using other related traits. The standard multi-trait genome-wide association study (MTM-GWAS) does not accommodate the network structure of phenotypes, therefore, does not address how traits are interrelated. We applied structural equation modeling (SEM) to GWAS to explore interrelated dependencies between phenotypes related to morphology (fruit size and number of reproductive nodes), physiology (vegetative vigor), and productivity (yield) traits using 195 Coffea arábica individuals genotyped with 21,211 single-nucleotide polymorphism markers. We inferred the probabilistic phenotypic network by the Hill-Climbing algorithm to estimate the structural coefficients. The integration of multivariate GWAS and SEM (SEM-GWAS) identified a positive interrelationship between vegetative vigor and yield, and vegetative vigor and the number of reproductive nodes. Among those traits, yield and number of reproductive nodes presented indirect SNP effects. There was no evidence of a single quantitative trait locus controlling all the traits jointly. We identified three genes (Stress enhanced protein 1, Abscisic stress-ripening protein 5, and SAR?SNI1) that acted directly on yield. In summary, SEM-GWAS offered new insights into the relationship between the traits linked to coffee yield, providing useful information for arabica coffee breeding programs.
NAL Thesaurus: Structural equation modeling
Genome-wide association study
Single nucleotide polymorphism
Coffea arabica var. arabica
DOI: https://doi.org/10.1007/s11295-023-01597-8
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (SAPC)

Ficheros en este ítem:
Fichero TamañoFormato 
Genome-wide-association.pdf4,26 MBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace