Please use this identifier to cite or link to this item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1169127
Title: Optimum combination of spectral variables for crop mapping in heterogeneous landscapes based on Sentinel-2 time series and machine learning.
Authors: OLIVEIRA JÚNIOR, J. G. de
ESQUERDO, J. C. D. M.
LAMPARELLI, R. A. C.
Affiliation: JOSÉ GALDINO DE OLIVEIRA JÚNIOR, UNIVERSIDADE ESTADUAL DE CAMPINAS; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; RUBENS AUGUSTO CAMARGO LAMPARELLI, UNIVERSIDADE ESTADUAL DE CAMPINAS.
Date Issued: 2024
Citation: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. X-3-2024, p. 85-92, 2024.
Description: This article aimed to determine a workflow for more efficient large-scale crop mapping using a time series of images from the Sentinel-2 Satellite, statistical methods of attribute selection, and machine learning. The proposed methodology explores the best possible combination of spectral variables related to vegetation (16 vegetation indices in the RGB, NIR, SWIR, and Red Edge regions) to characterize different spectro-temporal profiles of Land Use and Land Cover (LULC) in spatially heterogeneous landscapes.
Thesagro: Sensoriamento Remoto
Uso da Terra
NAL Thesaurus: Time series analysis
Remote sensing
Land cover
Land use
Keywords: Monitoramento agrícola
Séries temporais
Aprendizado de máquina
Cobertura da terra
Agricultural monitoring
Random forest
SITS
Red Edge
ISSN: 2194-9050
DOI: https://doi.org/10.5194/isprs-annals-X-3-2024-85-2024
Notes: Edition of proceedings of the ISPRS TC III mid-term symposium “Beyond the canopy: technologies and applications of remote sensing”, Belém, Brazil, 2024.
Type of Material: Artigo de periódico
Access: openAccess
Appears in Collections:Artigo em periódico indexado (CNPTIA)

Files in This Item:
File Description SizeFormat 
AP-Optimum-combination-2024.pdf1.15 MBAdobe PDFThumbnail
View/Open

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace