Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1169127
Título: Optimum combination of spectral variables for crop mapping in heterogeneous landscapes based on Sentinel-2 time series and machine learning.
Autor: OLIVEIRA JÚNIOR, J. G. de
ESQUERDO, J. C. D. M.
LAMPARELLI, R. A. C.
Afiliación: JOSÉ GALDINO DE OLIVEIRA JÚNIOR, UNIVERSIDADE ESTADUAL DE CAMPINAS; JULIO CESAR DALLA MORA ESQUERDO, CNPTIA; RUBENS AUGUSTO CAMARGO LAMPARELLI, UNIVERSIDADE ESTADUAL DE CAMPINAS.
Año: 2024
Referencia: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. X-3-2024, p. 85-92, 2024.
Descripción: This article aimed to determine a workflow for more efficient large-scale crop mapping using a time series of images from the Sentinel-2 Satellite, statistical methods of attribute selection, and machine learning. The proposed methodology explores the best possible combination of spectral variables related to vegetation (16 vegetation indices in the RGB, NIR, SWIR, and Red Edge regions) to characterize different spectro-temporal profiles of Land Use and Land Cover (LULC) in spatially heterogeneous landscapes.
Thesagro: Sensoriamento Remoto
Uso da Terra
NAL Thesaurus: Time series analysis
Remote sensing
Land cover
Land use
Palabras clave: Monitoramento agrícola
Séries temporais
Aprendizado de máquina
Cobertura da terra
Agricultural monitoring
Random forest
SITS
Red Edge
ISSN: 2194-9050
DOI: https://doi.org/10.5194/isprs-annals-X-3-2024-85-2024
Notas: Edition of proceedings of the ISPRS TC III mid-term symposium “Beyond the canopy: technologies and applications of remote sensing”, Belém, Brazil, 2024.
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CNPTIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
AP-Optimum-combination-2024.pdf1.15 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace