Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1175752
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorBERTOLLA, A. B.
dc.contributor.authorCRUVINEL, P. E.
dc.date.accessioned2025-05-19T19:47:56Z-
dc.date.available2025-05-19T19:47:56Z-
dc.date.created2025-05-19
dc.date.issued2025
dc.identifier.citationElectronics, v. 14, 1449, 2025.
dc.identifier.urihttp://www.alice.cnptia.embrapa.br/alice/handle/doc/1175752-
dc.descriptionAbstract: This paper presents a method for dynamic pattern recognition and classification of one dangerous caterpillar species to allow for its control in maize crops. The use of dynamic pattern recognition supports the identification of patterns in digital image data that change over time. In fact, identifying fall armyworms (Spodoptera frugiperda) is critical in maize production, i.e., in all of its growth stages. For such pest control, traditional agricultural practices are still dependent on human visual effort, resulting in significant losses and negative impacts on maize production, food security, and the economy. Such a developed method is based on the integration of digital image processing, multivariate statistics, and machine learning techniques. We used a supervised machine learning algorithm that classifies data by finding an optimal hyperplane that maximizes the distance between each class of caterpillar with different lengths in N-dimensional spaces. Results show the method’s efficiency, effectiveness, and suitability to support decision making for this customized control context.
dc.language.isoeng
dc.rightsopenAccess
dc.subjectImage processing
dc.subjectPattern recognition
dc.subjectPests classification
dc.subjectMachine learning
dc.titleComputational Intelligence Approach for Fall Armyworm Control in Maize Crop.
dc.typeArtigo de periódico
dc.format.extent238 p.
riaa.ainfo.id1175752
riaa.ainfo.lastupdate2025-05-19
dc.identifier.doihttps://doi.org/10.3390/ electronics14071449
dc.contributor.institutionALEX BISETTO BERTOLLA, CNPDIA; PAULO ESTEVAO CRUVINEL, CNPDIA.
Aparece nas coleções:Artigo em periódico indexado (CNPDIA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
P-Computational-Intelligence-Approach-for-Fall-Armyworm-Control-in-Maize-Crop.pdf6,24 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace