Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1176491
Título: A review of artificial intelligence techniques for wheat crop monitoring and management.
Autor: BARBEDO, J. G. A.
Afiliación: JAYME GARCIA ARNAL BARBEDO, CNPTIA.
Año: 2025
Referencia: Agronomy, v. 15, n. 5, 1157, May 2025.
Descripción: Artificial intelligence (AI) techniques, particularly machine learning and deep learning, have shown great promise in advancing wheat crop monitoring and management. However, the application of AI in this domain faces persistent challenges that hinder its full potential. Key limitations include the high variability of agricultural environments, which complicates data acquisition and model generalization; the scarcity and limited diversity of labeled datasets; and the substantial computational demands associated with training and deploying deep learning models. Additionally, difficulties in ground-truth generation, cloud contamination in remote sensing imagery, coarse spatial resolution, and the “black-box” nature of deep learning models pose significant barriers. Although strategies such as data augmentation, semi-supervised learning, and crowdsourcing have been explored, they are often insufficient to fully overcome these obstacles. This review provides a comprehensive synthesis of recent advancements in AI for wheat applications, critically examines the major unresolved challenges, and highlights promising directions for future research aimed at bridging the gap between academic development and real-world agricultural practices.
Thesagro: Trigo
Triticum Aestivum
NAL Thesaurus: Wheat
Artificial intelligence
Palabras clave: Inteligência artificial
Aprendizado de máquina
Aprendizado profundo
Agricultura digital
Datasets
Machine learning
Deep learning
Digital agriculture
ISSN: 2073-4395
DOI: 10.3390/agronomy15051157
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CNPTIA)

Ficheros en este ítem:
Fichero TamañoFormato 
AP-Review-Artificial-Intelligence-2025.pdf466.71 kBAdobe PDFVisualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace