Please use this identifier to cite or link to this item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1175827
Title: | Learning to utilize internal protein 3D nanoenvironment descriptors in predicting CRISPR–Cas9 of f-tar get activity. |
Authors: | MAK, J. K.![]() ![]() BENDANDI, A. ![]() ![]() SALIM, J. A. ![]() ![]() MAZONI, I. ![]() ![]() MORAES, F. R. de ![]() ![]() BORRO, L. ![]() ![]() STÖRTZ, F. ![]() ![]() ROCCHIA, W. ![]() ![]() NESHICH, G. ![]() ![]() MINARY, P. ![]() ![]() |
Affiliation: | JEFFREY KELVIN MAK, UNIVERSITY OF OXFORD; ARTEMI BENDANDI, ISTITUTO ITALIANO DI TECNOLOGIA; JOSÉ AUGUSTO SALIM, UNIVERSIDADE ESTADUAL DE CAMPINAS; IVAN MAZONI, CNPTIA; FABIO ROGERIO DE MORAES, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; LUIZ BORRO, BEON CLARO; FLORIAN STÖRTZ, UNIVERSITY OF OXFORD; WALTER ROCCHIA, ISTITUTO ITALIANO DI TECNOLOGIA; GORAN NESIC, CNPTIA; PETER MINARY, UNIVERSITY OF OXFORD. |
Date Issued: | 2025 |
Citation: | NAR Genomics and Bioinformatics, v. 7, n. 2, lqaf054, June 2025. |
Description: | Despite advances in determining the factors influencing cleavage activity of a CRISPR–Cas9 single guide RNA (sgRNA) at an (off-)target DNA sequence, a comprehensive assessment of pertinent physico-chemical/structural descriptors is missing. In particular, studies have not yet directly exploited the information-rich internal protein 3D nanoenvironment of the sgRNA–(off-)target strand DNA pair, which we obtain by harvesting 634 980 residue-level features for CRISPR–Cas9 complexes. As a proof-of-concept study, we simulated the internal protein 3D nanoenvironment for all experimentally available single-base protospacer-adjacent motif-distal mutations for a given sgRNA–target strand pair. By determining the most relevant residue-level features for CRISPR–Cas9 off-target cleavage activity, we developed STING_CRISPR, a machine learning model delivering accurate predictive performance of off-target cleavage activity for the type of single-base mutations considered in this study. By interpreting STING_CRISPR, we identified four important Cas9 residue spatial hotspots and associated structural/physico-chemical descriptor classes influencing CRISPR–Cas9 (off-)target cleavage activity for the sgRNA–target strand pairs covered in this study. |
NAL Thesaurus: | Computer simulation Molecular dynamics |
Keywords: | Sequenciamento genético Dinâmica molecular Aprendizado de máquina Simulação de nanoambiente de proteína Machine learning |
DOI: | https://doi.org/10.1093/nargab/lqaf054 |
Type of Material: | Artigo de periódico |
Access: | openAccess |
Appears in Collections: | Artigo em periódico indexado (CNPTIA)![]() ![]() |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
AP-Learning-utilize-2025.pdf | 2.85 MB | Adobe PDF | ![]() View/Open |