Use este identificador para citar ou linkar para este item: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1175827
Título: Learning to utilize internal protein 3D nanoenvironment descriptors in predicting CRISPR–Cas9 of f-tar get activity.
Autoria: MAK, J. K.
BENDANDI, A.
SALIM, J. A.
MAZONI, I.
MORAES, F. R. de
BORRO, L.
STÖRTZ, F.
ROCCHIA, W.
NESHICH, G.
MINARY, P.
Afiliação: JEFFREY KELVIN MAK, UNIVERSITY OF OXFORD; ARTEMI BENDANDI, ISTITUTO ITALIANO DI TECNOLOGIA; JOSÉ AUGUSTO SALIM, UNIVERSIDADE ESTADUAL DE CAMPINAS; IVAN MAZONI, CNPTIA; FABIO ROGERIO DE MORAES, UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"; LUIZ BORRO, BEON CLARO; FLORIAN STÖRTZ, UNIVERSITY OF OXFORD; WALTER ROCCHIA, ISTITUTO ITALIANO DI TECNOLOGIA; GORAN NESIC, CNPTIA; PETER MINARY, UNIVERSITY OF OXFORD.
Ano de publicação: 2025
Referência: NAR Genomics and Bioinformatics, v. 7, n. 2, lqaf054, June 2025.
Conteúdo: Despite advances in determining the factors influencing cleavage activity of a CRISPR–Cas9 single guide RNA (sgRNA) at an (off-)target DNA sequence, a comprehensive assessment of pertinent physico-chemical/structural descriptors is missing. In particular, studies have not yet directly exploited the information-rich internal protein 3D nanoenvironment of the sgRNA–(off-)target strand DNA pair, which we obtain by harvesting 634 980 residue-level features for CRISPR–Cas9 complexes. As a proof-of-concept study, we simulated the internal protein 3D nanoenvironment for all experimentally available single-base protospacer-adjacent motif-distal mutations for a given sgRNA–target strand pair. By determining the most relevant residue-level features for CRISPR–Cas9 off-target cleavage activity, we developed STING_CRISPR, a machine learning model delivering accurate predictive performance of off-target cleavage activity for the type of single-base mutations considered in this study. By interpreting STING_CRISPR, we identified four important Cas9 residue spatial hotspots and associated structural/physico-chemical descriptor classes influencing CRISPR–Cas9 (off-)target cleavage activity for the sgRNA–target strand pairs covered in this study.
NAL Thesaurus: Computer simulation
Molecular dynamics
Palavras-chave: Sequenciamento genético
Dinâmica molecular
Aprendizado de máquina
Simulação de nanoambiente de proteína
Machine learning
Digital Object Identifier: https://doi.org/10.1093/nargab/lqaf054
Tipo do material: Artigo de periódico
Acesso: openAccess
Aparece nas coleções:Artigo em periódico indexado (CNPTIA)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
AP-Learning-utilize-2025.pdf2.85 MBAdobe PDFThumbnail
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace