Por favor, use este identificador para citar o enlazar este ítem: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1179140
Título: A cloud-based intelligence system for Asian rust risk analysis in soybean crops.
Autor: NEVES, R. A.
CRUVINEL, P. E.
Afiliación: FEDERAL UNIVERSITY OF SAO CARLOS; PAULO ESTEVAO CRUVINEL, CNPDIA.
Año: 2025
Referencia: AgriEngineering, v. 7, 236, 2025.
Páginas: 42 p.
Descripción: This study presents an intelligent method for evaluating the risk of Asian rust (Phakopsora pachyrhizi) based on its development stage in soybean crops (Glycine max (L.) Merrill). It has been designed using smart computer systems supported by image processing, environmental sensor data, and an embedded model for evaluating favorable conditions for disease progression within crop areas. The approach also includes the use of machine learning techniques and a Markov chain algorithm for data fusion, aimed at supporting decision-making in agricultural management. Rules derived from time-series data are employed to enable scenario prediction for risk evaluation related to disease development. Measured data are stored in a customized system designed to support virtual monitoring, facilitating the evaluation of disease severity stages by farmers and enabling timely management actions.
Palabras clave: Asian soybean rust
Machine learning
Pattern recognition
Cloud
Big data
Tipo de Material: Artigo de periódico
Acceso: openAccess
Aparece en las colecciones:Artigo em periódico indexado (CNPDIA)

Ficheros en este ítem:
Fichero Descripción TamañoFormato 
P-A-Cloud-Based-Intelligence-System-for-Asian-Rust-Risk-Analysis.pdf80.33 MBAdobe PDFVista previa
Visualizar/Abrir

FacebookTwitterDeliciousLinkedInGoogle BookmarksMySpace