Use este identificador para citar ou linkar para este item:
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1175752
Título: | Computational Intelligence Approach for Fall Armyworm Control in Maize Crop. |
Autoria: | BERTOLLA, A. B.![]() ![]() CRUVINEL, P. E. ![]() ![]() |
Afiliação: | ALEX BISETTO BERTOLLA, CNPDIA; PAULO ESTEVAO CRUVINEL, CNPDIA. |
Ano de publicação: | 2025 |
Referência: | Electronics, v. 14, 1449, 2025. |
Páginas: | 38 p. |
Conteúdo: | Abstract: This paper presents a method for dynamic pattern recognition and classification of one dangerous caterpillar species to allow for its control in maize crops. The use of dynamic pattern recognition supports the identification of patterns in digital image data that change over time. In fact, identifying fall armyworms (Spodoptera frugiperda) is critical in maize production, i.e., in all of its growth stages. For such pest control, traditional agricultural practices are still dependent on human visual effort, resulting in significant losses and negative impacts on maize production, food security, and the economy. Such a developed method is based on the integration of digital image processing, multivariate statistics, and machine learning techniques. We used a supervised machine learning algorithm that classifies data by finding an optimal hyperplane that maximizes the distance between each class of caterpillar with different lengths in N-dimensional spaces. Results show the method’s efficiency, effectiveness, and suitability to support decision making for this customized control context. |
Palavras-chave: | Image processing Pattern recognition Pests classification Machine learning |
Digital Object Identifier: | https://doi.org/10.3390/ electronics14071449 |
Tipo do material: | Artigo de periódico |
Acesso: | openAccess |
Aparece nas coleções: | Artigo em periódico indexado (CNPDIA)![]() ![]() |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
P-Computational-Intelligence-Approach-for-Fall-Armyworm-Control-in-Maize-Crop.pdf | 6.24 MB | Adobe PDF | ![]() Visualizar/Abrir |